您的位置 首页 知识

角动量守恒公式 角动量守恒定律

角动量守恒

答:角动量守恒的条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。

角动量守恒的条件

角动量守恒的具体应用

1、用角动量守恒推算开普勒第二定律

开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。

行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数,由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。

2、跳远的时候,起跳之后,以身体中轴为o点,由于脚会产生一个的力矩,如果不向上摆手来抵消这个力矩,运动员就会向前翻转。

3、走路的时候走顺拐了会感觉别扭,因为顺拐合外力矩不为零,会使身体像陀螺一样打转而摔倒,所以甩手可以使角动量守恒维持身体的平衡。

延伸阅读

人走路时为什么要甩手——角动量守恒

一个常见的解释是,为了保持身体平衡。这种解释了和没解释没什么区别的答案是永远正确的,问题是甩手到底是怎么保持身体平衡的?

为了讲清楚这个问题,就需要引入角动量的概念(本文中所研究的对象只涉及绕轴的旋转,因此在这里就引入一个角动量的简化版本的定义):对于一个质量为 m 质点,以任意一条直线作为参考轴,设被研究的质点到这条轴的距离为 r ,如果质点 垂直于 r 方向 的速度为 v ,那么这个质点(相对于这条参考轴)的角动量则为 L = rmv 。如果被研究的物体不是质点,例如是一个人,那么 TA 整个的角动量就是 TA 身上所有质点的角动量之和。

知道了什么是角动量之后,我们就可以通过简单的推导立刻得出一个非常牛逼的性质,角动量定理。物体的角动量变化率等于它所受的外力矩(大家应该记得力矩是什么吧,就是 r 乘以垂直于 r 方向的力)。因此,倘若系统没有外力矩作用,那么角动量守恒。这种情况是十分多见的,例如一个旋转着的陀螺,为什么它不会很容易倒下呢?选取陀螺的转轴为参考轴,可以看到,它是不受外力矩的,因此它的角动量守恒,在理想情况下它将一直转下去。略微学过物理的人都知道动量 p 可以写成 p = mv ,所以角动量 L 就等于 r × p 。因此角动量守恒就可以被称之为 RP 守恒(这只是非官方叫法,莫当真)!

角动量守恒与能量守恒、动量守恒这三个守恒定律,是这个宇宙中最基本最牢不可破的三条定律,它们都是宇宙基本时空性质的反应。根据理论力学中的一个深刻的定理——诺特尔定理,能量守恒等价于时间平移对称性,即物理定律并不随着时间的流逝而发生改变;动量守恒等价于空间平移对称性,即物理定律并不随着空间地点的改变而改变;角动量守恒则等价于空间各向同性,即物理定律并不随着空间朝向的改变而改变。这是一个关键而美丽的结果。现代物理很多内容都是建立在对称性的种种性质上,诺特尔定理的结果就构成了现代物理基础的一部份,它是由女数学家 埃米?诺特(Emmy Noether)发现的。

角动量如何影响走路

回到本文一开始的问题上来。走路甩手是如何保持身体平衡的?

我们选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。注意,身体的角动量刚才还是顺时针,现在就变成了逆时针。根据角动量定理,角动量只要发生改变,就必须有力矩作用在系统上。因此,脚底必须给身体一个让其逆时针旋转的力矩,这是走路时身体受到外力矩的唯一方式。

但是由于人在匀速走路(通常情况下,我们的步行都可看成匀速的),所以把人看成一个整体的话,TA 所受的合力必然为 0 。因此这个力矩就必须是由一对等大、反向的力产生,而这个力就需要由脚底板和地面有个相对的旋转运动才能产生。

然而这种脚底转着搓地的动作想想都觉得难受,我们的身体大概没有进化出专门干这种诡异事情的肌肉。总结一下就是:如果不甩手,脚底板就要承受很别扭的转着搓地的运动。一般来说人们在走路时是不会选择后者的,因此依靠甩手保持身体平衡就成了顺理成章的事情。

当我们认可了脚底不会去转着搓地之后,人的身体整个就没有外力矩了,进而有角动量守恒并且等于零。换句话说,根植于潜意识中的走路程序始终是在维持着身体的角动量守恒。据此我们就可以很轻松地看出人类走路时应该如何甩手了:当两腿让身体有顺时针旋转时,双手就必须让整体再有个逆时针旋转,即哪边的腿往前迈,哪边的手就必须往后甩,这样才能让整体角动量保持为零,这就是正常的甩手方式;而如果顺拐的话,手和腿朝着同一方向,显然无法让整体角动量为零,这样走路的话就又需要脚底板难受了。这就是走路甩手奥秘的全部。

资料引用于果壳网

人造地球卫星绕地球做椭圆轨道运动,为什么角动量守恒

人造地球卫星绕地球做椭圆轨道运动,角动量守恒原因如下:卫星绕地球时只受万有引力,其方向从卫星指向地心,则卫星受合力矩为0,根据角动量守恒定理(若合外力矩为零,则系统的角动量守恒)。

角动量守恒是物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。角动量的几何意义是矢径扫过的面积速度的二倍。角动量守恒定律指出在合外力矩为零时,物体与中心点的连线单位时间扫过的面积不变,在天体运动中表现为开普勒第二定律。

角动量守恒原理公式李永乐

角动量守恒原理:角动量=转动惯量*角速度,角动量和角速度是矢量,其方向按一般的约定是,与旋转轴相同,指向右手螺旋方向(右手握旋转轴,四指指向旋转方向,拇指向上方向为角动量和角速度矢量的方向)转动惯量是标量,其大小为以旋转轴为z轴,对刚体作mr^2=m(x^2+y^2)的体积积分。

角动量守恒定律公式

角动量中转动惯量的求法有些需要微积分基础,这里给出质点:J=mr^2。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。

1角动量守恒定律

角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。

这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。

2角动量

角动量是在物理学中是与物体到原点的位移和动量相关的物理量。角动量的方向:角动量是r(参考点到质点的距离矢量)叉乘动量,是两个矢量的叉乘,在右手坐标系里遵循右手螺旋法,即右手四指指向r的方向,转过一个小于180度的平面角后四指指向动量的方向,则大拇指所指的方向。

角动量守恒定律形象解释

无论是宇宙中的星系、星体、甚至宇宙物质,还是量子力学中的某些物理现象,都符合角动量守恒。可见角动量守恒是物理中非常重要的定律。我们怎样理解它呢?

首先角动量是矢量,在经典力学中角动量的表达式是:

d(Jω)/dt=M

角动量在刚体动力学中与动量是对应的概念,它的大小取决于转动的速率ω和转动物体的质量分布即转动惯量J。

对角动量守恒来说,此表达式的物理意义就是,当物体的外力矩M等于零时,物体的角动量Jω=常数。也就是说,一个物体的转动也是有惯性的,只要外力矩等于零,转动惯量不变的情况下,物体转动的速度和方向是不变的。而物体受到内力或者受外力,只要不是外力矩,都不会改变物体的转动效应。

角动量的几何意义是,在合外力矩为零时,物体与中心点的连线,单位时间扫过的面积不变,在天体运动中表现为开普勒第二定律。例如,在相等时间内,太阳和地球的连线所扫过的面积都是相等的。

在量子力学中,角动量守恒的理论是与经典力学是相对应的。轨道角动量和自旋角动量各自都不守恒。当体系的哈密顿量具有空间转动变换下的对称性时,它才是守恒的。

角动量守恒条件

对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。

这一结论叫做质点角动量守恒定律。角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性例如,当考虑到太阳系中的行星受到太阳的万有引力这一有心力时,由于万有引力对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行星绕太阳公转单位时间内与太阳连线扫过的面积大小总是恒定值的原因。

另外,角动量守恒定律也是陀螺效应的原因。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。扩展资料:动量矩定理。表述角动量与力矩之间关系的定理。

对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。

对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。

利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。

由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。